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INDIVIDUAL VERSUS SOCIAL OPTIMIZATION IN THE ALLOCATION
OF CUSTOMERS TO ALTERNATIVE SERVERS

by
Colin E. Bell
Department of Management Sciences
The University of Iowa
and
Shaler Stidham, Jr.
Department of Industrial Engineering J
North Carolina State University !
Abstract

Customers arrive at a service area according to a Poisson process. An

arriving customer must choose one of K servers without observing present

, congestion levels. The only available information about the k-~-th server

is the service time distribution (with expected duration uk-l) and the cost
per unit time of waiting at the k-th server (hk). Although service distri-
butions may differ from server to server and need not be exponential, it is
assumed that they share the same coefficient of variation. Individuals
acting in self-interest induce an arrival rate pattern (Xl,iz,...,ix).

In contrast, the social optimum is the arrival rate pattern (A;.A;....,A;)

which minimizes long run average cost per unit time for the entire system.

The main result is that ik's and i:'s differ systematically. Individuals
overload the servers with the smallest hk/uk values.

For an exponential service case with pre-emptive LIFO service aa alter-
native charging scheme is presented which confirms that differences between
individual and social optima occur precisely because individuals fail to

congider the inconvenience that they cause to othera.
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Following the pioneering work of Naor [22], considerable attention has
been devoted to comparing individual joining behavior to socially optimal
joining behavior at a queuing system. The works of Naor [22], Lippman and
Stidham {19], Adler and Naor [1), Knudsen [16), Knudsen and Stidham [17},
Yechiali [29,30] and others all indicate that individuals acting in self-
interest tend to over-congest a system relative to the social optimum.

This phenomenon arises because a self-interested individual fails to con-
sider the impact of his joining on later arrivals.

In the above models the joining decision depends on the observed
current congestion level at the facility, thus inducing a state-dependent
arrival rate. In contrast, our model will assume that: (1) the overall
arrival rate is fixed but upon arrival customers must choose (or be assigned
to) one of several alternative servers, each with its own queue. Balking,
reneging, or jockeying are not permitted. (2) customers can not observe
the current queue length at each server, but they are aware of the service-
time distributions and waiting costs at the various servers. We will demon-
strate that there are systematic differences between individual and social
optimization; for a special case these differences will be shown to result
from the failure of an individual to consider the impact on others of his
joining a particular queue.

Since the allocations in our model are not functions of the state of
the system, it is a design model, in contrast to the control models of
Bell [2-6], Doshi [9], Heyman [14], Lippman and Stidham [19], Sobel ([25],
Winston [28] and others cited in the survey papers of Stidham and Prabhu [24]
and Sobel [26]. Alternative design models for stochastic service systems

have been studied by Morse [21], Hillier [15], Mangelsdorf (20], Evans [10],

Kumin [18], Stidham [23] and others.
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Section 1 contains preliminary results concerning the socially and
individually optimal selection of the arrival rate to an isolated M/G/1
facility, with a fixed reward for each entering customer and a linear
waiting cost. These results are of independent interest and also form the
basis for our Lagrangian analysis of the multi-facility model. Section 2
presents the basic multi-facility model, analyzes the social-optimum and
individual-optimum problems, and compares the allocations. For the main
result of Section 2 (Theorem 4) we do not require exponential servers but
do insist that the service-time distributions share a common coefficient of
variation. A counterexample is provided for the case where the coefficients
of variation are allowed to differ. Section 3 treats the special case of
exponential servers in more detail. Explicit formulas are given for the
socially and individually optimal allocations to each facility as functions
of the overall arrival rate. We also give (in Section 4) an alternate
charging scheme for inducing socially optimal behavior on the part of

individuals.

1. Preliminary Results: Isolated Single-Facility Model

We assume:

(1) a Poisson arrival process with rate A (a decision variable);

(2) a single server, who provides services of random duratic:. s with
E(S) = u-l, E(Sz) - bu-z; the known constant b is (necessarily)
greater than or equal to 1; the coefficient of variation of §
is then (b~ l)k;

(3) a fixed reward a earned for each customer who enters the system;

(4) a waiting cost h per customer per unit time in the queue and in

service.




The stipulation that A is a decision variable is satisfied, for
example, in the following scenario: Arrivals to the facility are governed
by a Poisson process with fixed rate A. An arriving customer may join
or balk. The probability, p, that an arriving customer joins is a decision
variable. Given a choice of p, the induced process of joining customers
is Poisson with rate A = pA.

The objective of social optimization is to choose an arrival rate A,
0 < A <y, to minimize the long-run average net cost per unit time.
(Rewards are treated as negative costs.) If arrival rate A prevails, then
the facility is an M/G/1 queue with an average of L(A) customers present.
The Pollaczek-Khintchine formula (cf. Cox and Smith [7] or Gross and

Harric {12]) yields:

LY = (/) + A%/ ulu- M) (1)

*
The social optimum A is then the solution to:

minimize hL(A) - aX = A{(1/u) + Ab/(2u(u=- 1)) - a] 2)

subject to 0 < X<y

The objective function in (2) is differentiable and strictly convex.
Denoting the derivative of L(°+) evaluated at A by L'()A), it follows

*
immediately that an optimal solution A 1is characterized by

') ~a, and A" >0 (3)
or

hL'(A*) = hfu > a, and A" 0. %)
Also from (1)

L'() = wlebAc2u- A/ (2utu- 0. (5)
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Let A*(u) be the value of k* determined by (3) and (4) for fixed a > 0.
It follows from (3), (4), and (5) that we can represent A*(a) by
* -1 i
A (a) = max{0; p~-u(b/(b+2ah "u-2)]°}. (6)

*
Note that A (a) = 0 for 0 < a < h/u. (There is nothing to be gained by
admitting customers if the waiting cost incurred during service alone
*
exceeds the reward.) Moreover, A (a) is positive, strictly increasing,

%
and strictly concave in a > h/y, with lim A (a) = u, as expected.
a-+w

Now consider the behavior of individual customers, each seeking to
maximize his expected net benefit (minimize his expected net cost). Since
all customers have the same information upon arrival, it is reasonable to
assume that all customers will use the same randomized strategy for
deciding whether to join or balk. If X is the arrival rate induced by
this common strategy (e.g., A = pA, where p is the probability of joining,
as described above), then the facility behaves as an M/G/l system with

average wait in system, W()A), for a customer who enters given by
W(A) = L(A) /2 = |.|m1 + Ab/(2u(u - 2)). %))

The average cost of the wait in system is thus hW(A). Note that the
rightmost expression in (7) can be used to define W(0) = u-l.

In order for the common strategy of individual customers to be in
equilibrium it is necessary and sufficient that the expected net benefit
to a joining customer be equal to 0, if X > 0, and less than or equal to O,
if A = 0. Otherwise, an individual customer would have an incentive to
deviate from the common strategy either by joining with probability one if

the expected net benefit is positive, or by balking with probability one

1f the expected net benefit is negative. Denoting the equilibrium

e =
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(individually optimal) value of ) by A, the necessary and sufficient con-

ditions for equilibrium are therefore

hW(}) = a, and A>0 (8)
or

WW(A) =h/u > o, and A = 0. 9)

Thus, although there is no overall objective to be minimized, the
requirements (8), (9) for a solution based on individual optimization are
analogous to the requirements (3), (4) for a social optimum. Denoting by
i(u) the value of A determined by (8) and (9) for fixed a, it follows from

(7), (8), and (9) that
A(a) = max{0; u-ulb/(b+ 2ah’1u5 2)]}. (10)

* N -
Like A (a), A(a) = 0 for 0 < a < h/u, and A(a) is positive, strictly

increasing, and strictly concave in a > h/y, with lim i(a) = U,
Q>

%
Having determined conditions satisfied by the social optimum A and

the individual optimum i, we are in a position to compare the two solutions.

* A E ] a
Lemma 1. For 0 < a < h/u, A (a) = A(a) = 0. For a > h/u, A (a) < i(a),
that ig, the individual optimum solution allows more customers to

enter than is socially optimal.

Proof. The first assertion is obvious. The second assertion can be

proved directly by comparing (6) and (9). The following alternate

proof, however, is perhaps more instructive and has wider applicability.

The objective function in the social~optimum problem takes the form:

C(A) = A(hW()) ~ a).




Since W(A) 1is strictly increasing in A, we see that C{A) < 0 for
0 £ A < A(a), C(R(a)) = 0, and C(A) > O for A > A(a). Since A*(a) mint-
mizes C()), it follows that X*(a) < i(a).

Note that the proof of Lemma 1 required only that W(A) be strictly
increasing in X > 0, with W(0) = u-l. Hence Lemma 1 is valid for any
queuing system for which these properties hold. 1In fact one expects that
these properties would hold in general in queuing systems in which W(})
is well defined as a long-run average within a suitable class of arrival
processes parameterized by the mean arrival rate A, as is the case with

Poisson processes.

2. Basic Results for Multi-Facility Model

Now we assume:
(1) a Poisson arrival process with fixed rate A > 0;

(2) K servers; server k provides services of random duration sk with

1,2 -2 X
E(Sk) = s E(S) =bu 7 kzl u > A
(3) arrival rate A, at server k (a decision variable); an arrival to

k
the system is assigned to server k with probability Ak/A;

(4) a waiting cost hk per customer per unit time in the queue and

in service at server k;
(5) servers numbered so that hl"l-l < thz-l S eer S hx"x-l'

Two possible scenarios which might make the asaumption of a common
coefficient of variation for all service distributions plausible are:
(1) the nature of the service function is such that it is reasonable to
assume that all service distributions come from a parametric family with

this assumption, or (2) the servers represent processors which process

“work" in a deterministic fashion at a rate v work units per unit time;

§ ————— e

._Ju .As&“___; _"—‘ Sie



?

customers require a random duration of a server's attention because they
present the server with a random number of work units; customer work unit
requirements have expected value 1 and variance (b-1), coefficient of
variation (b—l)k.

The social optimization problem is one of finding an allocation,
AI*, Az*, cees AK*’ of customers to servers so as to minimize the long-run
average cost per unit time for the entire system. If arrival rate Xk pre-~
vails at server k, then server k is an M/G/1l queuing system with an
average of Lk(xk) customers present, where Lk(kk) is given by formula (1)
with A and u replaced by Ak and W respectively. The social optimum
(Al*, Az*, sees AKf) is then the solution to:

K
minimize kzl hkLk(Ak) !

. K
subject to ) A = A (11)
k=1

0: A <uk’k-1’2'-..,Ko

k

It can readily be demonstrated (e.g., using generalized Lagrange multi~

pliers) that an optimal solution to (11) satisfies equations of the form
. . (3) and (4) for each k and some value of a such that 2 Xk A. Thus

(11) can be solved by a one-dimensional search over akzlo. with Ak (o)

defined (as in the single-facility model) by
A *(a) = max{0, u,_ - u, [b/(b+ 2ah by - 2)]”} (12)
k 'k Tk k 'k *

Since { A (a) is strictly increasing in a > hl"l 1. we need only find

kel
: the unique u* with { A @) = A since A @ >0 1ff a> L, g
s | k=]
i ’ is clear that A > O implies A" >0 for § < k. Only the highest numbered

k 3

P servers (if any) are not used at all.

csiidogian, T T XTI T T T




The individual optimization problem is one of finding an equilibrium
common-strategy arrival-rate vector ‘31' iz. ceesy ix). The average wait
in system k for a customer who enters, denoted uk(xk), is given by
formula (7), with A and p replaced by Xk and i respectively. By analogy
with the single-facility problem, in order for the arrival-rate vectrr
to be in equilibrium it is necessary and sufficient that (i) the average
cost of waiting, hkwk(ik), be equal at all servers k that are used (i.e.,
with ik > 0) and (1i) any server k with xk = 0 cannot have hkuk-l less than
the common average waiting cost at used servers. Similar necessary and
sufficient conditions for equilibrium were established by Dafermos [8)}, Hall
and Peterson [13], Wardrop [27], and other authors cited in Florian [11] in
the context of traffic flows in a network. It follows that an equilibrium

( solution satisfies equations of the form (8) and (9) for each k and some

K
value of o such that 2 Ak(u) = A, Again, an equilibrium solution can be
> k=1

found by a one-dimensional search over a > 0, with ik(u) defined by:

Be(@) = max(0, w =, [b/(b+ 26h, " - 21} a3

K
Since Z Ak(o) is strictly increasing in a > h1u1~1, we need only find
k=1

K . . ,
the unique & with § A (@) = A, since A (a) >0 iff a > h
L 2 k.l

clear that ik > 0 implies A

kuk-l’ it 1is

3 >0 for § < k.

We now compare the social optimum and individual optimum solutions

for the multi-facility problem. We first prove Lemma 2, which establishes
*® A
that Ak = 0 implies kk = 0 : the social optimum makes use of at least as

many servers as the individual solution.

S v ame e e —— e
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L -~
Lemma 2. a > a.

-~

&
Proof. Suppose a” g G. Then from (12) and (13), %, = 0 tmplies 2 * = 0.

On the other hand, if ik > 0, then by Lemma 1

-~

i -~ A~ %* * *® * K A *
A= X@ 2 %) >3 (@) = A . Hence ) (A, = A ) is positive,

k=1
since it contains at least one positive term and no negative terms.
K K 4
This contradicts the requirement that ) X = YA =A. Thus
k |3
x . k=1 k=1
a > a.

* * -
F = cee :- A * mm
or each k = 1,2,...,K, define LN Ak /uk and Py Ak/uk.
Dividing both sides of (12) and (13) by e yields the following result,

which is used in the proof of the main theorem.

Lemma 3. For i < j,

* -1 -1
with equality only if hiui - hjuj :

-1 ~1
with equality only if hiu1 hjuj .

* *
(1 Xi >0 = Py 2 Dj

(11) xi >0 = Py 2 oj

We are now ready for the main theorem, which shows that individual optimiza~
tion systematically overloads the lower numbered servers (those with

smallest hk/uk).

x . *
Theorem 4. If Xi 2 Ai, then Xj 2 xj for all j > {.
* x - -

Proof. Assume i < §. First ki = 0 and Ai 2 xi imply xi = 0 and hence

Aj* = ii = 0 by Lesma 3 and thus the theorem holds. Now suppose

) ~ * Lol
A > 0and At 3 R, bur 3" <%, Then Lewmas 2 and 3 taply all of
* A * ~
Ai . Ai’ Aj R Aj are positive. From (3) and (8)

® &
hiLi'(X1 )=a =hL'(A

*
3ty Oy a4

-

hiwi(xi) =g = thj(kj). (15)




Define p: = \/u and

f(p): = pb/(2(1-p)). (16)

Note that f(p) is differentiable, non-negative, strictly increasing, and
strictly convex in 0 < p < 1. We shall also need the following property

of £(+), which is easily verified from (16) by differentiation:
of'(p)/f(p) 18 strictly increasing in O $p<l. a7n

It follows from (1) and (7) that L(A) = p(1+£(p)), L'()\)-u-1(1+f(p)+pf'(p)).
and W(A) = u-l(li-f(p)). Hence (14) and (15) can be rewritten in equiva-

lent form:
tyu HA+E0M 40,0, ") = 0" = b Tharee M o "0, a8

(g, HA+EGED) = d = b, "HQ + 6. (19)

"

x - X
By the hypotheses, o, > G and p, < pj. It follows by subtracting (19)

i 3
from (18) and using the fact that f(°) is strictly increasing and strictly

convex that

(hyuy DB B 50" - & < guTHEE G, (20)

But (19) and the fact that hi“i.l

< hjuj-l imply that
(o, HEG,) > (o, HEG,) (21)
171 1 = 37 i
Dividing (20) by (21) yields

from which it follows, using property (17), that 61 < 51. which is a

contradiction of Lemma 3. Therefore, it cannot be true that both
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01* 2 51 and oj* < 5j' We conclude that pi* 4 61 implies pj* 2 Bj, the
desired result.

Note that f(p) as defined by (16) equals the average waiting time in
the queue, expressed in units of mean service time. Thus Theorem & is
valid for any multi-facility queuing system in which the average waiting
time at each facility k, normalized in this way, is a function only of the
traffic intensity, Ak/uk. at that facility, the function is the same for
all facilities, and it has the properties referred to in the proof of the
theorem: scriétly increasing, strictly convex, and property (17). Note
also that in order for these properties to hold it suffices for f to be
strictly increasing and log convex.

Theorem 4 assumes that all service time distributions share a common
coefficient of variation and demonstrates that individuals overload servers
k with low hk/uk. 1f these coefficients of variation are allowed to differ
from server to server one might suspect a tendency to shy away from
servers with a particularly high coefficient of variation. This tendency
provides our counter-example.

Let server 1 have y, = 1+10-8, hy=1, b;=2 (e.g., exponential service)
and let server 2 have vy = 1, hz-l, bz- 1 (constant service) so that
hy/uy <hy/u,. Using (12) and (13), 2" and & can be found to be .435 and
«414 respectively. Thus (Al*- Al)-'.021 while (Az*-xz) = -,021, contra-

dicting Theorem 4.

3. Further Results for Exponential Servers

Throughout this section we assume an exponential service-time distri-

*® -~
bution. In this case b= 2 and the expregssions for Ai (a) and Ai(u) become,

respectively,




,u.._k;zu:x======EEw!!ﬂ'-Il-I---F~—!--u-un-u~—-1-u-'-p--—u-uuu-.

¢

12
A, () = wax{0, u, - (h,u,/2)") (22)
i LS | A8 §
Ai(a) = max{0, "1-'hil°}' (23)
* * *
To find the social optimum allocation, Al . Az » eeey AK » for a given
system arrival rate A, we know from the analysis in section 2 that it
* K * &
suffices to find the unique a=a such that Z Ai (a) = A. Similarly,
i=1
to find the equilibrium allocation, il. iz, sees XK’ it suffices to find
K . .
the unique a=a such that ) Ay (@) = A,
i=1

* * - ~ -~ -
S Define k : = max{k|a > b My 1}, k: = max{k|a > by Wy 1y, Then the
open facilities in the social (individual) optimum allocation are facili-
* * .
ties 1 through k (k), where k 2 k by Lemma 2. 1t follows from (22) and

(23) that
*

k
1 ("1' (h‘uila*)k) = A,
i=]1

~

k
} (u,-h /a) = A,
i1 1 3

from which we see that

A . . «1
*
. (1/a")" « ) ug= A ( ) (hiui)}’) (24)
i=] i=1 ‘
R E & "1 [}
é= |1 u-n ()’_ hi) (25) :
i=1 i=]
Now k* -1 * -1 -1 A
ow k 1is the unique k such that hk"k <a < hk+1uk+1 (with hk+1"k+1
replaced by = when k = K). Similarly, k is the unique k such that
-1 a -1

g hk"k <acg hk+1"k+1 . Combining these inequalities with (24) and (25)

' yields the following characterizations:

s - - S e - - S e — e . - _—r e e R it e T T
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k k k
* -1 .k Y
k o=k 1ff Ju - Tu)? P udtang Lo
LT O wdT L (R A
k |
-1 ;‘ li :
T Oy )" L g (26) |
|
|
and !
|
' CS-ahy 8 i ‘
k =k 1iff w, - ( TH)) h, <A< u \
"7 e LR g=1 1 |
- ( -1 E h |
P M) L Py 2n
|
N 3 b, L) § -1 |
ow define r : = ileui- (b w7, 8 = 1gllui--(hk whuols
|
K
( k=1,2,...,K, and Tealt ™ Sga1t ™ 121;11. (Note that r, =8 = 0.) It 1
|
follows from (22)-(27) that the socially optimal and individually optimal ‘
allocations are given by the following explicit formulae: J
0, if 0 <A<
" " |
| 3" i/ % o (& |
' ¥y | Chyup) /1zl(h1u1) '(izlui- ). f rp<Agr (28) f
L | JsksK ‘
i
X 0, 1f 0 < A < sj ].
3 Aj - k k i

These formulae reveal that in both the socially optimal and the

individually optimal allocationa, each facility gets a share, u y° Aj, of
K

the total excess service capacity, 2 u i'A’ of all open facilities. In
i=}

the socially optimal allocation, the share given to facility j is proportional

[ T o

o il e e e e ‘
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to (h )k. vhereas in the individually optimal allocation it is propor-

13 !
tional to hj‘ Note also that Aj and Aj are both piecewise-linear in A,

K

0 <A« 2 Byo and concave over the range where they are positive.
i=1

4. An Alternative Charging Scheme for the Exponential Service Case

Throughout this section we again assume exponential gervice. Although
we have been unable to derive analogous results for other cases, results
in this section demonstrate explicitly that not being required to consider
others causes individual behavior to fail to attain a social optimum.

Since b= 2 for exponential service, (1) can be simplified and the rela-

tionship L= AW used to write

W) = 1/ G - X)) (30)

and (5) can be rewritten as

L O = /Gy =22 (31)

For individual optimization all hkwk(kk) for xk>»0 are equated and for
® *
social optimization all hkL‘:(Ak ) for Ak >0 are equated.
None of our results to this point have required that the service

discipline be specified. For clarity we assume that each server provides

pre-emptive LIFO service. Under this assumption an arriving customer at
server k remains in the system for one M/M/1 busy period and pays h, per
unit time while there. With LIFO service he inconveniences those customers
who are already in the system and forces them to wait through one addi-
tional busy period; however, he 1is not charged in any way for inconven-

iencing others.
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As an alternative, assume that an arriving customer must pay hk per
unit time for himself and for each of the other customers whom he incon-

veniences. Then his average cost is

b G, = A L+ A G - A7 (32)

“1 je the

-1
vhere (uk-kk) is the average busy period length, Ak(uk- Ak)
average number of other customers present when he arrives, and the term in
brackets in (32) is the average number of customers inconvenienced
including himself. But (32) simplifies to hkuk(uk- Ak)-z. With this
revised charging scheme an equilibrium arrival rate vector (Xl.iz.....iK)
would be established equating hkuk(uk-ik)°2 for all k with Xk>'°' But
these are exactly the conditions for a social optimum. Thus (in this

context) individuals will act in a socially optimal way when they are

forced to explicitly pay for the inconvenience caused to others.

e e e (e g
‘:.‘ & . el
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})Custqmers arrive at a service area according to a Poisson process. An

arriving customer must choose one of X servers without observing present

congestion levels. The only available information about the k-th server

~

is the service time distribution (with expected duration - M 1) and the cost

T " N
per unit time of waiting at the k-th server (hk)' Although service distri-

butions may differ from server to server and need not be exponential, it is

assumed that they share the same coefficient of variatiqn. Individuals
(4’.f¢..’ LSRN kb W),
acting in self- 1ntere§§,1nduce an arrival rate pattetn (Al Az.....xk).~
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In contrast,(fﬁ“’social optimum {s the arrival rate patterﬂ”{ii.*zy....xx)v
which minimizes longggun average cost per unit time for the entire system.
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The main resu1t<is that,xk s and Xk & differ/Tystefgﬁ}igt}y.ﬁ‘ﬁ?i:viduals
overload the servers with the smallest hkluk}values.

For an exponential service case with pre-emptive LIFO service an alter-
native charging scheme is presented which confirms that differences between
individual and social optima occur preciselv because individuals fail to

consider the inconvenience that they cause to others.
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